Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38659895

RESUMO

N-lactoyl-phenylalanine (Lac-Phe) is a lactate-derived metabolite that suppresses food intake and body weight. Little is known about the mechanisms that mediate Lac-Phe transport across cell membranes. Here we identify SLC17A1 and SLC17A3, two kidney-restricted plasma membrane-localized solute carriers, as physiologic urine Lac-Phe transporters. In cell culture, SLC17A1/3 exhibit high Lac-Phe efflux activity. In humans, levels of Lac-Phe in urine exhibit a strong genetic association with the SLC17A1-4 locus. Urine Lac-Phe levels are also increased following a Wingate sprint test. In mice, genetic ablation of either SLC17A1 or SLC17A3 reduces urine Lac-Phe levels. Despite these differences, both knockout strains have normal blood Lac-Phe and body weights, demonstrating that urine and plasma Lac-Phe pools are functionally and biochemically de-coupled. Together, these data establish SLC17 family members as the physiologic urine transporters for Lac-Phe and uncover a biochemical pathway for the renal excretion of this signaling metabolite.

2.
Nat Commun ; 14(1): 8125, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065934

RESUMO

Peptide hormones and neuropeptides are signaling molecules that control diverse aspects of mammalian homeostasis and physiology. Here we provide evidence for the endogenous presence of a sequence diverse class of blood-borne peptides that we call "capped peptides." Capped peptides are fragments of secreted proteins and defined by the presence of two post-translational modifications - N-terminal pyroglutamylation and C-terminal amidation - which function as chemical "caps" of the intervening sequence. Capped peptides share many regulatory characteristics in common with that of other signaling peptides, including dynamic physiologic regulation. One capped peptide, CAP-TAC1, is a tachykinin neuropeptide-like molecule and a nanomolar agonist of mammalian tachykinin receptors. A second capped peptide, CAP-GDF15, is a 12-mer peptide cleaved from the prepropeptide region of full-length GDF15 that, like the canonical GDF15 hormone, also reduces food intake and body weight. Capped peptides are a potentially large class of signaling molecules with potential to broadly regulate cell-cell communication in mammalian physiology.


Assuntos
Neuropeptídeos , Hormônios Peptídicos , Animais , Neuropeptídeos/metabolismo , Taquicininas/metabolismo , Comunicação Celular , Processamento de Proteína Pós-Traducional , Hormônios Peptídicos/metabolismo , Mamíferos/metabolismo
3.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333131

RESUMO

Peptide hormones and neuropeptides are fundamental signaling molecules that control diverse aspects of mammalian homeostasis and physiology. Here we demonstrate the endogenous presence of a sequence diverse class of orphan, blood-borne peptides that we call "capped peptides." Capped peptides are fragments of secreted proteins and defined by the presence of two post-translational modifications - N-terminal pyroglutamylation and C-terminal amidation - which function as chemical "caps" of the intervening sequence. Capped peptides share many regulatory characteristics in common with that of other signaling peptides, including dynamic regulation in blood plasma by diverse environmental and physiologic stimuli. One capped peptide, CAP-TAC1, is a tachykinin neuropeptide-like molecule and a nanomolar agonist of multiple mammalian tachykinin receptors. A second capped peptide, CAP-GDF15, is a 12-mer peptide that reduces food intake and body weight. Capped peptides therefore define a largely unexplored class of circulating molecules with potential to regulate cell-cell communication in mammalian physiology.

4.
Cell Metab ; 35(7): 1261-1279.e11, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37141889

RESUMO

There is a significant interest in identifying blood-borne factors that mediate tissue crosstalk and function as molecular effectors of physical activity. Although past studies have focused on an individual molecule or cell type, the organism-wide secretome response to physical activity has not been evaluated. Here, we use a cell-type-specific proteomic approach to generate a 21-cell-type, 10-tissue map of exercise training-regulated secretomes in mice. Our dataset identifies >200 exercise training-regulated cell-type-secreted protein pairs, the majority of which have not been previously reported. Pdgfra-cre-labeled secretomes were the most responsive to exercise training. Finally, we show anti-obesity, anti-diabetic, and exercise performance-enhancing activities for proteoforms of intracellular carboxylesterases whose secretion from the liver is induced by exercise training.


Assuntos
Diabetes Mellitus , Secretoma , Camundongos , Animais , Proteômica , Proteínas , Obesidade
5.
J Biol Chem ; 299(6): 104764, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121548

RESUMO

N-acyl amino acids are a large family of circulating lipid metabolites that modulate energy expenditure and fat mass in rodents. However, little is known about the regulation and potential cardiometabolic functions of N-acyl amino acids in humans. Here, we analyze the cardiometabolic phenotype associations and genomic associations of four plasma N-acyl amino acids (N-oleoyl-leucine, N-oleoyl-phenylalanine, N-oleoyl-serine, and N-oleoyl-glycine) in 2351 individuals from the Jackson Heart Study. We find that plasma levels of specific N-acyl amino acids are associated with cardiometabolic disease endpoints independent of free amino acid plasma levels and in patterns according to the amino acid head group. By integrating whole genome sequencing data with N-acyl amino acid levels, we identify that the genetic determinants of N-acyl amino acid levels also cluster according to the amino acid head group. Furthermore, we identify the CYP4F2 locus as a genetic determinant of plasma N-oleoyl-leucine and N-oleoyl-phenylalanine levels in human plasma. In experimental studies, we demonstrate that CYP4F2-mediated hydroxylation of N-oleoyl-leucine and N-oleoyl-phenylalanine results in metabolic diversification and production of many previously unknown lipid metabolites with varying characteristics of the fatty acid tail group, including several that structurally resemble fatty acid hydroxy fatty acids. These studies provide a structural framework for understanding the regulation and disease associations of N-acyl amino acids in humans and identify that the diversity of this lipid signaling family can be significantly expanded through CYP4F-mediated ω-hydroxylation.


Assuntos
Aminoácidos , Família 4 do Citocromo P450 , Ácidos Oleicos , Humanos , Aminoácidos/sangue , Aminoácidos/química , Doenças Cardiovasculares , Família 4 do Citocromo P450/metabolismo , Ácidos Graxos/metabolismo , Leucina , Fenilalanina , Ácidos Oleicos/sangue
6.
bioRxiv ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36945562

RESUMO

N-acyl amino acids are a large family of circulating lipid metabolites that modulate energy expenditure and fat mass in rodents. However, little is known about the regulation and potential cardiometabolic functions of N-acyl amino acids in humans. Here, we analyze the cardiometabolic phenotype associations and genetic regulation of four plasma N-fatty acyl amino acids (N-oleoyl-leucine, N-oleoyl-phenylalanine, N-oleoyl-serine, and N-oleoyl-glycine) in 2,351 individuals from the Jackson Heart Study. N-oleoyl-leucine and N-oleoyl-phenylalanine were positively associated with traits related to energy balance, including body mass index, waist circumference, and subcutaneous adipose tissue. In addition, we identify the CYP4F2 locus as a human-specific genetic determinant of plasma N-oleoyl-leucine and N-oleoyl-phenylalanine levels. In vitro, CYP4F2-mediated hydroxylation of N-oleoyl-leucine and N-oleoyl-phenylalanine results in metabolic diversification and production of many previously unknown lipid metabolites with varying characteristics of the fatty acid tail group, including several that structurally resemble fatty acid hydroxy fatty acids (FAHFAs). By contrast, FAAH-regulated N-oleoyl-glycine and N-oleoyl-serine were inversely associated with traits related to glucose and lipid homeostasis. These data uncover a human-specific enzymatic node for the metabolism of a subset of N-fatty acyl amino acids and establish a framework for understanding the cardiometabolic roles of individual N-fatty acyl amino acids in humans.

7.
Nature ; 606(7915): 785-790, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35705806

RESUMO

Exercise confers protection against obesity, type 2 diabetes and other cardiometabolic diseases1-5. However, the molecular and cellular mechanisms that mediate the metabolic benefits of physical activity remain unclear6. Here we show that exercise stimulates the production of N-lactoyl-phenylalanine (Lac-Phe), a blood-borne signalling metabolite that suppresses feeding and obesity. The biosynthesis of Lac-Phe from lactate and phenylalanine occurs in CNDP2+ cells, including macrophages, monocytes and other immune and epithelial cells localized to diverse organs. In diet-induced obese mice, pharmacological-mediated increases in Lac-Phe reduces food intake without affecting movement or energy expenditure. Chronic administration of Lac-Phe decreases adiposity and body weight and improves glucose homeostasis. Conversely, genetic ablation of Lac-Phe biosynthesis in mice increases food intake and obesity following exercise training. Last, large activity-inducible increases in circulating Lac-Phe are also observed in humans and racehorses, establishing this metabolite as a molecular effector associated with physical activity across multiple activity modalities and mammalian species. These data define a conserved exercise-inducible metabolite that controls food intake and influences systemic energy balance.


Assuntos
Ingestão de Alimentos , Comportamento Alimentar , Obesidade , Fenilalanina , Condicionamento Físico Animal , Adiposidade/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Tipo 2 , Modelos Animais de Doenças , Ingestão de Alimentos/fisiologia , Metabolismo Energético , Comportamento Alimentar/fisiologia , Glucose/metabolismo , Ácido Láctico/metabolismo , Camundongos , Obesidade/metabolismo , Obesidade/prevenção & controle , Fenilalanina/administração & dosagem , Fenilalanina/análogos & derivados , Fenilalanina/metabolismo , Fenilalanina/farmacologia , Condicionamento Físico Animal/fisiologia
8.
ACS Chem Biol ; 13(8): 1970-1977, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30004670

RESUMO

Chemical genetics is a powerful approach for identifying therapeutically active small molecules, but identifying the mechanisms of action underlying hit compounds remains challenging. Chemoproteomic platforms have arisen to tackle this challenge and enable rapid mechanistic deconvolution of small-molecule screening hits. Here, we have screened a cysteine-reactive covalent ligand library to identify hit compounds that impair cell survival and proliferation in nonsmall cell lung carcinoma cells, but not in primary human bronchial epithelial cells. Through this screen, we identified a covalent ligand hit, DKM 3-42, which impaired both in situ and in vivo lung cancer pathogenicity. We used activity-based protein profiling to discover that the primary target of DKM 3-42 was the catalytic cysteine in aldehyde dehydrogenase 3A1 (ALDH3A1). We performed further chemoproteomics-enabled covalent ligand screening directly against ALDH3A1, and identified a more potent and selective lead covalent ligand, EN40, which inhibits ALDH3A1 activity and impairs lung cancer pathogenicity. We show here that ALDH3A1 represents a potentially novel therapeutic target for lung cancers that express ALDH3A1 and put forth two selective ALDH3A1 inhibitors. Overall, we show the utility of combining chemical genetics screening of covalent ligand libraries with chemoproteomic approaches to rapidly identify anticancer leads and targets.


Assuntos
Aldeído Desidrogenase/antagonistas & inibidores , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Aldeído Desidrogenase/química , Animais , Antineoplásicos/química , Antineoplásicos/toxicidade , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisteína/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/toxicidade , Células Epiteliais/efeitos dos fármacos , Células HEK293 , Humanos , Ligantes , Camundongos SCID , Proteômica/métodos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/toxicidade , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...